# Mechanistic Modelling Approaches to Pollen-mediated Gene Flow and Confinement

Franco DiGiovanni

#### Presentation Outline

- Introduction
- Models Overview
- Factors Affecting Pollen Dispersal by Wind
- Models for Wind Vector
- Regulatory Application for Risk Assessment

#### Introduction: Why a problem?

- Seed production
- Environmental and human health concerns
- Authorizations for releases ←
   Environmental risk assessments
- One aspect of the assessment is pollen/gene-flow
- Modelling an important tool

#### Introduction: Pollination

- Pollination mode: Out-crossing ↔
   selfing
- Vector: insects ↔ wind
- Common wind pollinated crops: corn, canola, Millet, oats, wheat

#### Introduction: Containment

- Biological: induced male sterility, etc., temporal isolation
- Physical methods: distance isolation, barrier crops, windbreak-like structures

• Suggested based on measurement but pollen/gene flow highly variable

#### Models - Overview

- Modelling vs measurement
  - Site-specific measures not generalizable
  - Difficult to assess variability in pollen/gene flow measures
  - Models can predict
- Empirical vs mechanistic vs genetic

#### Models – Mechanistic

- Based upon physics/chemistry of processes
- Wind vector: physics of atmospheric dispersal
- Insect vector: quasi-mechanistic

#### Models – Overview

- Pollen/gene flow cannot be entirely modelled mechanistically
- Must deal with sub-processes separately and split into "mechanistic" and "biological" sub-process
- Easy to do because most (modern) models are modular

#### Models – Biological sub-processes



(Song *et al*. 2001)

In vitro pollen germination after anther dehiscence. The nonlinear regression was  $Y_{\text{Minghui }63} = 1.92/(1 \pm 1.376 \exp^{(0.177x)})$ ,  $R^2 = 0.99$ ;  $Y_{\text{O.rußpogon}} = 0.88/(1 \pm 0.616 \exp^{(0.093x)})$ ,  $R^2 = 0.98$ ;  $Y_{\text{hybrid}} = 0.413/(1 \pm 0.309 \exp^{(0.179x)})$ ,  $R^2 = 0.99$ , respectively.

#### Models – Overview

• The more heavily the model relies on empirical sub-processes the less likely it is to easily generalizable.

# Factors affecting Outcrossing in Wind Pollinated Plants

Source

Dispersal

• Deposition → fertilization

#### Source

• # pollen released/plant

Height of release

• temporal cycles and variability - environmental factors

#### Timing of Pollen Release



#### Dispersal

Wind speed

Atmospheric stability

• Pollen settling velocity - weight, rh(%)

# Dispersal



### Deposition

- Ground
- Vegetative parts: f(settling velocity, wind speed, size of plant element)
- stigmas  $\rightarrow$  gene-flow
- Gene-flow: viability environmental conditions

#### Models for the Wind Vector



# Regulatory Application of Models for Risk Assessment

- Develop/validate appropriate dispersal models
- conversion to gene-flow
- run for various sites with long-term
   meteorological data → determine variability
- run with alternative isolation techniques

### Specification for Wheat

- Some input parameters ill-defined
- Set to "maximum" → conservative model outputs
- Potential regulatory application

# Dealing with a Lack of Input Data

List of model input parameters











**SRPPR** 

AE

PV

**PSV** 

Pc







 $u_*$ 



#### Pollen Dispersion

All Stations PD - Average - All Heights



# Probability of Exceeding an OC Threshold

All Sites - Exceedances - 1 m



#### Different Isolation Methods

1. Barrier crops

2. Barren isolation zones

3. Windbreak-like structures

4. Flowering desynchronization



#### Different Isolation Methods: Barren isolation zones

10% OC Threshold



#### Summary

- Modelling will be a very useful tool in the regulatory risk assessment of novel plants
- They can be used to assess present and novel containment methods
- Maximizing the mechanistic content of models should be the ultimate goal
- However, substantial use can be made of models at present
- Appropriate model required for the appropriate situation
- OC and containment should be assessed on a probabilistic basis given their variability